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Much of the effort required to create a new simulation code goes into developing infrastructure
for mesh data manipulation, adaptive refinement, design optimization, and so forth. This infras-
tructure is an obvious target for code re-use, except that implementations of these functionalities
are typically tied to specific data structures. In this paper, we describe a software component —
an abstract data model and programming interface — designed to provide low-level mesh query
and manipulation support for meshing and solution algorithms. The component’s data model
provides a data abstraction, completely hiding all details of how mesh data is stored, while its
interface defines how applications can interact with that data. Because the component has been
carefully designed to be general-purpose and efficient, it provides a practical platform for imple-
menting high-level mesh operations independently of the underlying mesh data structures. After
describing the data model and interface, we provide several usage examples, each of which has
been used successfully with multiple implementations of the interface functionality. The overhead
due to accessing mesh data through the interface rather than directly accessing the underlying
mesh data is shown to be acceptably small.

Categories and Subject Descriptors: D.2.$2ffware Engineering]: Interoperability; D.2.13 $oftware En-
gineering]: Reusable softwarefeusable libraries1.6.7 [Simulation and Moddling]: Simulation support sys-
tems—environments
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General Terms: Design, Performance
Additional Key Words and Phrases: data structure independence, mesh-based simulations, mesh
modification, software components

1. INTRODUCTION

Developing new simulation software for problems describggartial differential equa-
tions has become a relatively common but nonethelessailirious task. Much of the
effort required to create a new simulation code goes inteld@ing infrastructure for
mesh and geometry data manipulation, equation discristizadaptive refinement, design
optimization, and so forth. Because this infrastructumimmon to many simulations, re-
usable software for these tasks could be shared across rimamaton codes and could
significantly reduce both the time, effort, and expertisguieed to develop and maintain
new simulation codes.

Currently, libraries are the most common mechanism for software re-use in skgenti
computing, including highly-successful examples for ntins linear algebra [Balay et al.
1997; Balay et al. 2004; EISPACK 2004; LAPACK 2004; LINPACR®] and parallel
partitioning and load balancing [Devine et al. 2002; Bomiaialke2007; ParMETIS 2008;
Walshaw and Cross 2007; Jostle 2002]. A key drawback in Uirayies as a mechanism
for software re-use is the difficulty in modifying an applica already using one library so
that it can use another. At a minimum, all symbol names fromlimary must be changed
to names from the other. However, the difficulties reallyyoloégin there. Libraries of
similar purpose often package functionality in very diffiet ways. Consequently, data
structures shared between application and library andtixecontrol flow between appli-
cation and library may need to be totally re-designed. Taexdto re-design an application
— or portions of it — so that it can re-use some other piece fifwoe is often termed an
impedance mismatciThe greater the impedance mismatch, the more effort iSnextjto
resolve it. This time-consuming re-design process can lignéfisant diversion from the
central scientific investigation, so many application eesbers are reluctant to undertake
it. As a result, improvements in algorithms often take yé¢amnigrate from the research
community into application simulations.

Componentsepresent a higher level of abstraction than libraries. dote from the
Common Component Architecture Forum (CCA) website [CCAURohomepage 2004],

A component is a software object, meant to interact with other compaent
encapsulating certain functionality or a set of functidied. A componenthas

a clearly defined interface and conforms to a prescribedw@heommon to

all components within an architecture....

Thecomponent interfaceis a set of methods supported by a component, and
type definitions for the data used for arguments to those mdsthAn interface
itself is a type and can be an argument for a component method.

Essentially, a component defines bothpeecificatiorfor an application programming in-
terface (API) and an abstragata modedefining the semantics of the data that is passed
through the interface. Returning to the familiar exampldirndéar algebra, a numerical
linear algebra component would define a standard interfac@gerations such as dot
products, matrix-vector multiplication, and linear systsolution. Its abstract data model
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A Software Component for Mesh Query and Manipulation : 3

would include objects such as vectors and matrices. A kegrstidge to components is that
any application using a component caithout modificationuse another implementation
of that same component, because all compliant implementatiecessarily have equiv-
alent functionality. In other words, software re-use carabhieved with no additional
effort.

This paper describes a meshing component intended to suppelevel mesh access
and manipulation. In addition, this component is desigrmedupport the requirements
of solver applications, including the ability to define mesliiosets and to attach arbitrary
user data to mesh entities. Finally, our mesh componenfacis intended to be both
language and data structure independent. In summary, thle coenponent we present is
intended to support low-level interaction between apfilices programs — both meshing
and solution applications — and external mesh databasasdiegs of the data structures
and programming language used by each.

The most prominent example of prior research in definingfates for meshing is the
Unstructured Grid Consortium (UGC), a working group of thadtican Institute for Aero-
nautics and Astronautics’s Meshing, Visualization, anan@ating Environments Techni-
cal Committee [UGC Consortium 2005]. The first release of W&C interface [UGC
Consortium 2002] was aimed at high level mesh operatiormduding mesh generation
and quality assessment. Recognizing a need for additioniblaver-level functionality,
the UGC has developed an interface for defining generic tagélservices, as well as a
low-level query and modification interface for mesh datalsasmed exclusively at mesh-
ing operations [Steinbrenner et al. 2005]; results of sugtrigs in the UGC interface are
explicitly expressed as integer indices into data arrayth, @bvious implications for how
implementations of that interface must store data. Thelémgt UGC interface is similar
in scope to our API, although we have deliberately been menel in providing support
for functionality required by solvers and in emphasizintedatructure neutrality.

In addition, several efforts have been made to define comnterfaces to mesh data in
the context of writing meshes to disk files. Two examples aeeHDF Mesh API [HDF5
2008; 2007] and the CFD General Notation System (CGNS) [CEDeBal Notation Sys-
tem 2004; Legensky et al. 2002]. These efforts are similapint, though they are either
not complete enough (e.g. provide no mechanism to annotesh mwith other data) or
address mesh data with a different level of abstraction thaihchosen in our work.

1.1 A Simple Use Case for a Mesh Component

As an example of how a typical scientific computing applmatnight benefit from using
a mesh component, let us consider a finite element solverdIvESfor some partial dif-
ferential equation, and how this application might evolverdime?! Let us assume that
when first developed, FESolve is a simple finite element spligng linear elements. At
run time, FESolve loads a mesh from a file and does some poegsimg of the mesh to
compute geometric quantities (such as integration pomdsageights) and perhaps to com-
pute some mesh topological relationships that weren'ténfille. Then, FESolve iterates
over the elements in the mesh, computing the residual anstiffreess matrix for each,
and assembling these into a global linear system. Thismyistsolved, and the solution
is updated at every node. This iteration process may be teghsaveral times, e.g., for

Iwhile different applications will surely have differentpgirements for interacting with unstructured mesh data,
many, if not most, applications will follow roughly this samoutline.
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time-dependent or non-linear problems.

After FESolve has been in use for some time, its developeaigid¢hat mesh adaptation
is required to improve solution accuracy and/or efficieith current approaches to de-
veloping mesh infrastructure software, they have two fumetatally different choices. One
choice is to select some existing mesh adaptation codeswtity some other researcher(s)
and integrate it with FESolve by resolving whatever impedamismatch may exist. In
many cases, this will require replacing the entire meshhdesta and infrastructure in FE-
Solve with new software infrastructure from the mesh adaptaode, including updating
FESolve to access data in a totally different way. The otheice is to ignore all exist-
ing mesh adaptation implementations and develop, fronidtran implementation that is
specifically tailored to fit into FESolve’s current architee. Of course, there are hybrid
solutions which combine these two approaches.

A standard mesh component provides a third, less painfultevaiyake this transition.
Let us assume that there exists a stand-alone service thaitlps key mesh adaptation
operations such as element division and coarsening. A masipanent interface can
serve as the intermediary between the provider of mesh dathi¢ case, FESolve) and
users of mesh data (in this case, the mesh adaptation erfeeinterface specifies a set
of fundamental mesh query and manipulation operationssserce, a mesh component
interface proclaims “If you are going to ask me about a md#sé are the questions you
can ask and this is how you ask them.” or “If you are going torafgeon a mesh, these are
the operations you can perform and this how you perform thdie component’s data
model specifies how mesh data is encapsulated.

When using a standard mesh component and a compliant adapsatvice, the de-
velopers of FESolve are now required only to provide impletagons of the component
functionality used by the adaptation code. That is, if theslimadaptation code uses only
a handful of the queries and operations in the mesh compamentace, then only this
handful of functions needs to be added to FESolve. Once didgolve’s data, in its own
internal data structures, can be used directly by the meaptation code without further
integration. As a bonus, in implementing part of the meshpament interface, the FES-
olve development team will have done some of the work requivéntegrate other useful
advanced capabilities available through the mesh componen

1.2 The ITAPS Mesh Component

In this paper, we will describe a newly developed componetgnided to provide sup-

port for the mesh access and manipulation requirementsacfipal, large-scale scientific

computing applications. This component, developed asopartarger project by the Inter-

operable Tools for Advanced Petascale Simulation (ITARB)}er to develop interopera-
ble software tools for meshes, domain geometry, and solugipresentation [Chand et al.
2008], is called iMesh. Note the words “support for”: the hecomponentis not intended
to be a general interface to all possible meshing operatmrigather, to define the oper-
ations required at a mesh database level so that high-lpeshtions — including mesh

generation, mesh improvement, mesh adaptation, paralilipning, load balancing, and

design optimization — can be implementedsasvicesthat store and manipulate mesh
data by using the iMesh component and mesh databases tHahiemt the component’s

functionality. To be genuinely useful to real applicati@ml real application developers,
the component must be
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—ageneral purpose: most common mesh operations must benraptable based on the
iMesh component,

—efficient; data access using the iMesh component and ite imgntations must not come
at too high a cost in overhead,

—flexible: different applications may want to use differapproaches for the same task,
and

—interoperable: implementations of the component mustrllg tnterchangeable, and
services designed to use the component should work on a ptuplay basis, regardless
of data structures and programming language.

Section 2 describes the design principles we followed toerthat the iMesh component
met these goals. We first defined a data model (see Sectiore3jing operations require
information about mesh entities (like vertices, triangdéces, and hexahedral regions),
collections of entities, and meta-data associated withhreatities. Using that data model,
we then defined an API that would support general meshing ashi+related solver op-
erations (see Section 4). In addition to defining the iMeshponent interface, we have
also developed implementations of it based on existing rdatdibases and used these im-
plementations for various meshing and PDE solution tagk&rsl examples will be given
in Section 5. The paper will conclude with discussion of ¢esslearned from developing
this component, of the current status of software usinghtesh component, and of future
prospects for extension and application of the iMesh corapbn

2. DESIGN PRINCIPLES

In Section 1.2, we summarized our goals for the iMesh compbnAs design of the
component interface continued, we found that several jplies recurred frequently in
guiding our design decisions as we worked towards thosesg@pecifically, we found
that we made decisions to produce an interface that was:

ComprehensiveClearly, a minimal requirement is that most typical meshrafiens
must be possible, either intrinsically through the iMesimponent API or by building on
it.

Run-time efficiencyf-or the iMesh component to be useful for applications, itrhase
low overhead. Specifically, the component interface musidsgned so that an iMesh
implementation can provide data access and manipulatemiyrees rapidly as native access
to the same mesh database. An example of the applicationsgbttinciple in the iMesh
component interface are the availability of both singléitgrand array-of-entities access
to mesh data, either of which may be more efficient dependirthe circumstances.

Ease of useTo lower the barrier for adoption of the interface, it mustélatively easy
for programmers to use. This implies the interface must lagively compact but also pro-
vide direct access to commonly used constructs, even axpiemee of additional functions
in the interface. For example, we recognize that certaiegygf metadata — specifically,
double, integer, and entity handle metadata — will be vergroon and more easily han-
dled both by iMesh implementations and applications if ¢hare specific functions for
these types. However, to preserve flexibility in such casesalso provide general access
mechanisms; for the metadata example, generic data isilbledersing byte strings. Con-
trariwise, where this can be done without loss of functiipalve prefer to use a single,
more general function rather than a collection of specificcfions to reduce the number
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of functions programmers must learn and use; for examglegaliests for entities adja-
cent to a given entity use the same function, rather thamiaeéparate functions for each
possible adjacency.

Flexibility. We recognize that different applications may choose toesgpthe same se-
mantic content in different ways. Where feasible, the iMesarface supports this. For
example, one application may choose to represent boundaditon data by metadata
attached to particular mesh entities; another may reptésersame information by col-
lecting those entities into a set and annotating the setanstAs another example, some
applications may choose to access data entity by entityewaltiilers may prefer array access
to data.

Extensibility. We have designed the interface to allow extensions to thddgal mesh
access functionality that the interface defines. For exapgrigoing work for a parallel
extension to the iMesh interface leverages serial iMeshtfanality for parallel usage.

Interoperability. In the long-term, success of the iMesh component will depmmidow
well the componenttruly supports interoperability. Tlsistie key to being able to leverage
the effort in development of both implementations and sewias well as conversion of
applications to use the interface. Interoperability, imfurequires not only the use of
a standard interface, but also data structure and progragnlaguage neutrality. Also,
interoperability can be enhanced by eliminating gray are@gre component behavior is
implementation-dependent.

3. DATA MODEL

In the iMesh data model, all mesh primitives — vertices (Gflges (1D), faces (2D), and
regions (3D) — are referred to antities Entity setsare collections of mesh entities and
other sets.. All topological and geometric mesh dada, well as all other entity sets, are
contained in aoot entity set To provide a scope for mesh data and to allow representation
of multiple meshes, each root set is treated by the iMeshmatke| as amstancewhich is
analogous to a C++ object, though it need not be implemehtsdmy (in this analogy, the
iMesh interface definition is, loosely, a C++ class). In manglementations, the instance
will be a database or collection of containers storing althef mesh entities, with other
entity sets containing handles for these entities ratham ttopies of all entity data. Any
iMesh data object — an entity or any entity set including thetiset — can have one or
moretagsassociated with it, so that arbitrary data can be attachétobject. To preserve
data structure neutrality, all iMesh data objects are ifledtby opaque handles. The
interface makes no assumptions about the way these haegiesent data; in particular,
pointer and integer handles are treated identically in tiberface and have been used in
implementations.

3.1 Mesh Entities

All the primitive constituents of a mesh are defined by thesMdata model asntities
iMesh entities are distinguished by their entiyype (vertex, edge, face, or region: effec-
tively, their topological dimension) anpology(for example, triangle, quadrilateral, or

2Geometric mesh daia geometric data required to define shapes of mesh enfitiés is distinct fromgeometric
model datawhich defines the shape of the problem domain.
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Fig. 1: Entities supported by the iMesh component. Candmridge ordering is indicated in the sketch; canonical
face ordering is given in the table. Polygons and polyheatrinsically have no canonical ordering.

tetrahedron). Each topology has a unique entity type aatsutivith it. Examples of en-
tities include vertices, edges, triangular or quadriltéaces in 2D or 3D, and tetrahedral
or hexahedral regions in 3D; a complete catalog of entitigpsrted by iMesh is shown
in Figure 1. Higher-dimensional entities are defined by ledienensional entities using a
canonical ordering.

Adjacencies describe how mesh entities connect to each dtbean entity of dimen-
siond, a first-order adjacency request returns all of the meskietf dimensiom which
are on the closure of the entity for downward adjacertty-(qg), or for which the en-
tity is part of the closure for upward adjacendy< q), as shown in Figure 2(a) and (b).
For an entity of dimensiod, second-order adjacencies describe all of the mesh entitie
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(a) Downward adjacency; edges (b) Upward adjacency: edges ad- (c) Second adjacency; red edges
adjacent to a face, vertices adja- jacent to a vertex, faces adjacent to are adjacent to vertices adjacent to
cent to an edge. an edge. the red face.

Fig. 2: Examples of adjacency relationships between metitiesn

of dimensiong that share any adjacent entities of dimendipmvhered # b andb # q.
Second-order adjacencies can be derived from first-ordacewlcies. Note that, in the
iMesh data model, requests such as all vertices that ardlnmig to a given vertex are
requests for second-order adjacencies. Figure 2(c) bigisliall edges adjacent to vertices
adjacent to the shaded face.

3.2 Entity Sets

The iMesh data model allows arbitrary groupings of entjtizdledentity setsEach entity
set may be a true set (in the set theoretic sense) or it may pessilly non-unique) or-
dered list of entities; in the latter case, entities araaedd in the order in which they were
added to the entity set. An entity set may or may not be a sirophnected computational
mesh; entity sets thatre simple meshes have obvious application in multiblock anttimu
grid contexts, for instance. Entity sets (other than the set) are populated by addition
or removal of entities from the set. In addition, set Boolegerations — subtraction,
intersection, and union — on entity sets are also supported.

Two primary relationships among entity sets are suppoFResdt, entity sets may contain
one or more entity sets (by definition, all entity sets beltmthe root set). An entity set
contained in another may be either a subset or an elemeft ifetire set theoretic sense)
of that entity set. The choice between these two interposisis left to the application;
the iMesh component does not impose either interpretat&at.contents can be queried
recursively or non-recursively; in the former case, if gnsiet A is contained in entity set
B, a request for the contents of B will include the entitiesAifand the entities in sets
contained in A). Second, parent/child relationships betwentity sets are used to repre-
sent logical relationships between sets, including muttignd adaptive mesh sequences.
These logical relationships naturally form a directed clicygraph.

Examples of entity sets include the ordered list of vertloegnding a geometric face,
the set of all mesh faces that lie on that geometric face, ¢hefsregions assigned to
a single processor by mesh partitioning, and the set of ailienin a given level of a
multigrid mesh sequence.

For use with most solution applications, information in tbet set or one or more of
its constituent entity sets is typically a valid mesh for sostientific computing task,
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examples of which include:

—A non-overlapping, connected set of iMesh entities; foaraple, the structured and
unstructured meshes commonly used in finite element simakagimple mesh

—Overlapping grids in which a collection of simple meshesiaged to represent some por-
tion of the computational domain, including chimera, nhitick, and multigrid meshes
(multiple mesh The interfaces presented here handle these mesh typegenesal
way; higher-level services may be added later to suppodifipéunctionalities needed
by these meshes. In this case, each of the simple mesheslid eoraputational mesh,
stored as an entity set.

—Adaptive meshes in which all entities in a sequence of rdfifsmple or multiple)
meshes are retained in the root set. The most highly refineptation level typically
comprises a simple or multiple mesh. Typically, differeavdls of mesh adaptation will
be represented by different entity sets, with many of thitieashared by multiple entity
sets.

—Smooth particle hydrodynamic (SPH) meshes, which cow$iat collection of iMesh
vertices with no connectivity or adjacency information.

Meshing applications will typically have a valid computatal mesh as their end product,
though during processing the mesh database will often nist thés state.

3.3 Tags

Tags are used as containers for user-defined data that calatieeal to iMesh entities and
entity sets. Different values of a particular tag can be @ased with different entities
or sets; for instance, a boundary condition tag will havéed#nt values for an inflow
boundary than for a no-slip wall, and no value at all for faicethe interior of the mesh.
In the general case, iMesh tags do not have a predefined tgballaw the user to attach
arbitrary data to mesh entities; this data is stored anigvetd by implementations as a byte
pattern. To improve performance and ease of use, we sujper specialized tag types:
integers, doubles, and entity handles. These typed taddscm@iMesh implementation to
correctly save and restore tag data when a mesh is writtefileo a

4. INTERFACE FUNCTIONALITY

The iMesh interface supports a variety of commonly neededtfanalities for mesh and
entity query, mesh modification, entity set operations, @ys. All data passed through
the interface is in the form of opaque handles to objects défin the data model. In
this section we describe the functionality available tiylothe iMesh interfacé. For a
reference implementation and simple usage examples, sedARS web site [ITAPS
Software Webpage 2007].

4.1 Global Queries

Global query functions can be categorized into two grougsdatabase functionghat
manipulate the properties of the database as a whole aset guery functionghat query

SNote that these descriptions do not include detailed symthich can be found in the interface user guide [Chand
et al. 2007a; 2007b]. Also, note that all function names @ittierface are prepended by iMesh_; this prefix is
omitted in the tables in this paper for compactness.
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Table I: Functions for Global Queries. (All function names prepended with iMesh_.)

Function | Description |

newMesh Creates a new, empty mesh instance

dtor Destroys a mesh instance

load Loads mesh data from file into entity set

save Saves data from entity set to file

getRootSet Returns handle for the root set

getGeometricDim Returns geometric dimension of mesh

setGeometricDim Sets geometric dimension of mesh (must not contain data yet)

getDfltStorage Tells whether implementation prefers blocked or interésheoordinate data

getAdjTable Returns table indicating availability and cost of entityemeincy data

setAdjTable Specifies requirements for entity adjacencies and itegator

areEHValid Returns true if EH remain unchanged since last user-reggissatus reset

getNumOfType Returns number of entities of type in ES

getNumOfTopo Returns number of entities of topo in ES

getEntities Returns all entities in ES of the given type and topology

getVixArrCoords For all input vertex handles, return coords; storage ordare user-specified.

getAdjEntindices Given ES and optionally a type or topology, return: EH's in@&$he specified
type or topology; EH’s adjacent to those entities with a ffj@ttype, as a list of
unique handles; and for each entity in the first list, the eglpentities specified
as indices into the second list.

the contents of entity sets as a whole; these functionsmequientity set argument, which
may be the root set. These functions are summarized in Table |

Database functions include functions to create and destesh instances; note that the
create function only sets up data structures for the mesarios, which must be filled by
reading data from a file or by creating a mesh entity by enfitye load and save func-
tions read and write mesh information from files; file formatlaead/write options are
implementation dependent. As mesh data is loaded, erditeestored in the root set, and
can optionally be placed into a subsidiary entity set as.vildlésh implementations must
be able to provide coordinate information in both blockexx(xyyy...zzz...) and inter-
leaved (xyzxyzxyz...) formats; an application can quegyithplementation to determine
the implementation’s preferred storage order.

For a particular implementation, not all first-order adjagies are necessarily available.
For instance, in a classic finite element element-node adivitg storage, requests for
faces or edges adjacent to an entity may return nothingusedae implementation has no
stored data to return. For first-order adjacencies that\aiable in the implementation,
the implementation may store the adjacency informatioaatly, or compute adjacencies
by either a local traversal of the entity’s neighborhood prgiobal traversal of the en-
tity set. Each iMesh implementation must provide inforroatabout the availability and
relative cost of first-order adjacency queries. Also, aiserer application may specify
which adjacencies it requires and what entity types it vdtate over; this information,
which can be updated by the service or application as itsselednge, can be used by
implementations to optimize internal storage for minimumnory use and efficient data
retrieval.

Set query functions allow an application to retrieve infation about entities in a set.
The entity set may be the root set, which will return selectattents of the entire database,
or may be any subsidiary entity set. For example, functicist & request the number of
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Table II: Functions for Single Entity Queries. (All funatimames are prepended with iMesh_.)

| Function | Description |
initEntlter Create an iterator to traverse entities of type and topo inr&8rn true if any
entities exist
getNextEntlter Return true and a handle to next entity if there is one; falkeraise
resetEntlter Reset iterator to restart traverse from the first entity
endEntlter Destroy iterator
getEntType Return type of entity
getEntTopo Return topology of entity
getVtxCoord Return coordinates of a vertex
getEntAdj Return entities of given type adjacent to EH
getEnt2ndAdj Return entities of given type adjacent to entities of a sd¢ppe adjacent to EH

Table IlI: Functions for Block Entity Queries. (All functionames are prepended with iMesh_.)

| Function | Description |
initEntArriter Create a block iterator to traverse entities of type and tofeS
getNextEntArriter Return true and a block of handles if there are any; falseraike
resetEntArriter Reset block iterator to restart traverse from the first gntit
endEntArriter Destroy block iterator
getEntArrType Return type of each entity
getEntArrTopo Return topology of each entity
getEntArrAdj Return entities of type adjacent to each EH
getEntArr2ndAdj Return entities of given type adjacent to entities of a sddype adjacent to

each EH

mesh entities of a given type or topology; the types and tmyiek are defined as enu-
merations. Applications can request handles for all estitf a given type or topology
or handles for entities of a given type adjacent to all egitf a given type or topology.
Also, vertex coordinates are available in either blockethterleaved order. Coordinate
requests can be made for the arrays of vertex handles retbsnan adjacency call. Fi-
nally, for entities of a given type and topology, their adjatentities of a given type can be
returned, along with an array of compressed sparse rowistjilees into the global vertex
coordinate array can be obtained for both entity and adjadity requests.

4.2 Entity- and Array-Based Query

The global queries described in the previous section are tasetrieve information about
all entities in an entity set. While this is certainly a pieat alternative for some types of
problems and for small problem size, larger problems oasitas involving mesh modifi-
cation require access to single entities or to blocks ofiestiThe iMesh interface supports
traversal and query functions for single entities and focks of entities; the query func-
tions supported are entity type and topology, vertex coatgis, and entity adjacencies.
Blocks of data are passed through the interface using aofagstity handles. Tables Il
and Il summarize these functions.

4.3 Mesh Modification

The iMesh interface supports mesh modification by provigimginimal set of operators
for low-level modification; both single entity (see Table)l&nhd block versions (see Ta-
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Table IV: Functions for Single Entity Mesh Modification. {(Alinction names are prepended with iMesh_.)

| Function | Description |
createVix Create vertex at given location
setVixCoords Changes coordinates of existing vertex
createEnt Create entity of given topology from lower-dimensionaliges; return entity
handle and creation status
deleteEnt Delete EH from the mesh

Table V: Functions for Block Mesh Modification. (All functionames are prepended with iMesh_.)

| Function | Description |
createVixArr Create vertices at given location
setVixArrCoords Changes coordinates of existing vertices
createEntArr Create entities of given topology from lower-dimensionaiitées; return entity
handle and status
deleteEntArr Delete each EH from the mesh

ble V) of these operators are provided. High-level funcidy, including mesh generation,

quality assessment, and validity checking, can in prirdi@ built from these operators, al-
though in practice such functionality is more likely to beyided using intermediate-level
services that perform complete unit operations, inclugigngex insertion and deletion with

topology updates, edge and face swapping, and vertex smgoth

Geometry modification is achieved through functions thaingje vertex locations. Ver-
tex locations are set at creation, and can be changed aseeégfdr instance, by mesh
smoothing or other vertex movement algorithms.

Topology modification is achieved through the creation aekktibn of mesh entities.
Creation of higher-dimensional entities requires spegtifit, in canonical order, of an
appropriate collection of lower-dimensional entities.r kwstance, a tetrahedron can be
created using four vertices, six edges or four faces, bufroat combinations of these.
Upon creation, adjacency information properly connectirgnew entity to its closure is
set up by the implementation. Some implementations mayvath@ creation of dupli-
cate entities (for example, two edges connecting the sam&dvtices), while others will
respond to such a creation request by returning a copy oftbady-existing entity.

Deletion of existing entities is typically done from highés lowest dimension. The
iMesh interface also allows the deletion of an entity witlsérg upward adjacencies (for
instance, an edge that s still in use by one or more faceg@ns); in this case, downward
adjacency requests may be nonsensical.

4.4 Entity Sets

Entity set functionality in the iMesh interface is divideato three parts: basic set func-
tionality, hierarchical set relations, and set Boolearratiens.

Basic set functionality, summarized in Table VI, includesating and destroying entity
sets; adding and removing entities and sets; and seveityl sgttspecific query functiorfs.
Entity sets can be either ordered and non-unique, or unedderd unique; an ordered set
guarantees that set query results (including traversdlpiwiays be given in the order in

4Note that the global mesh query functions (Section 4.1) emetsal functions (Section 4.2) defined above can
be used with the root set or any other entity set as their figstraent.
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Table VI: Functions for Basic Entity Set Functionality. (Adnction names are prepended with iMesh_.)

| Function | Description |
createEntSet Creates a new entity set (ordered and non-unique if isListie&
destroyEntSet Destroys existing entity set
isList Return true if the set is ordered and non-unique
getNumEntSets Returns number of entity sets contained in SH
getEntSets Returns entity sets contained in SH
addEntSet Adds entity set SH1 as a member of SH2
rmvEntSet Removes entity set SH1 as a member of SH2
isEntSetContained Returns true if SH2 is a member of SH1
addEntToSet Add entity EH to set SH
rmvEntFromSet Remove entity EH from set SH
addEntArrToSet Add array of entities to set SH
rmvEntArrFromSet Remove array of entities from set SH
isEntContained Returns true if EH is a member of SH
isEntArrContained Check an array of entities for membership in SH

Table VII: Functions for Entity Set Relationships. (All fciion names are prepended with iMesh_.)

| Function | Description |
addPrntChld Create a parent (SH1) to child (SH2) relationship
rmvPrntChid Remove a parent (SH1) to child (SH2) relationship
isChildOf Return true if SH2 is a child of SH1
getNumcChld Return number of children of SH
getChldn Return children of SH
getNumPrnt Return number of parents of SH
getPrnts Return parents of SH

Table VIII: Functions for Entity Set Boolean Operationsli{nction names are prepended with iMesh_.)

| Function | Description |
subtract Return set difference SH1-SH2 in SH
intersect Return set intersection of SH1 and SH2 in SH
unite Return set union of SH1 and SH2 in SH

which entities were added to the set. The ordered/unordgatuas of an entity set must be
specified when the set is created and can be queried.

Entity sets are created empty. Entities can be added to avwedrfrom the set individ-
ually or in blocks; for ordered sets, the last of a number gilidate entries will be the
first to be deleted. Also, entity sets can be added to or rethiveen each other; note that,
because all entities and sets are automatically contamtiroot set from creation, calls
that would add or remove an entity or set from the root set atgparmitted. An entity
set can also be queried to determine the number and handietsdhat it contains, and to
determine whether a given entity or set belongs to that set.

Hierarchical relationships between entity sets are irgdnttd describe, for example,
multilevel meshes and mesh refinement hierarchies. Thetdinal relationships implied
here are labeled as parent-child relationships in the iNtesiface. Functions are provided
to add, remove, count, and identify parents and childrentardktermine if one set is a
child of another; see Table VII.
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Set Boolean operations — intersection, union, and sulitraet- are also defined by
the iMesh interface; these functions are summarized ineT&tll. The definitions are
intended to be compatible with their C++ standard templiiteuly (STL) counterparts,
both for semantic clarity and so that STL algorithms can lgelley implementations where
appropriate. All set Boolean operations apply not onlgriitymembers of the set, but also
to setmembers. Note that set hierarchical relationships arenutided: the set resulting
from a set Boolean operation on sets with hierarchical icglahips will not have any
hierarchical relationships defined for it, regardless efitiput data. For instance, if one
were to take the intersection of two directionally-coaestmeshes (stored as sets) with
the same parent mesh (also a set) in a multigrid hierarcagetis no reason to expect that
the resulting set will necessarily be placed in the multidnierarchy at all. On the other
hand, if both of those directionally-coarsened meshesatoatset of boundary faces, then
their intersection will contain that set as well.

While set Boolean operations are completely unambiguousriordered entity sets,
ordered sets make things more complicated. For operatiomdich one set is ordered
and one unordered, the result set is unordered; its cordemthe same as if an unordered
set were created with the (unique) contents of the ordetemhgkthe operation were then
performed. In the case of two ordered sets, the iMesh spatidfictries to follow the spirit
of the STL definition, with complications related to the @b#iy of multiple copies of a
given entity handle in each set. We recognize that these auesomewhat arbitrary, but
have been unable to find a more systematic way of defining theseations for ordered
sets. In the following discussion, assume that a givenyehéihdle appeans times in the
first set anch times in the second set.

—For intersection of two ordered sets, the output set wititam min(m,n) copies of
the entity handle. These will appear in the same order aserfitst input set, with
the first copies of the handle surviving. For example, irgetion of the two seté =
{abacdbcdand B = {dadbag will result in AN\B = {abacd}.

—Union of two ordered sets is easy: the output set is a conatite of the input sets:
AlB = {abacdbcadadbac

—Subtraction of two ordered sets results in a set contaimiag(m— n,0) copies of an
entity handle. These will appear in the same order as in thgfiput set, with the first
copies of the handle surviving. For exampe; B = {abc}.

Regardless of whether the entity members of an entity sebralered or unordered, the
set members are always unordered and unique, with corrdspgy simple semantics for
Boolean operations.

4.5 Tags

Tags are used to associate application-dependent datawitbsh, entity, or entity set.
Basic tag functionality defined in the iMesh interface is suamized in Table 1X, while
functionality for setting, getting, and removing tag dataiummarized in Table X.

When creating a tag, the application must provide its dgpe gnd size, as well as
a unigue name. For generic tag data, the tag size specifiesrtaow bytes of data to
store; for other cases, the size tells how many values ofiduat type will be stored. The
implementation is expected to manage the memory neededr® tsig data. The name
string and data size can be retrieved based on the tag'séhardl the tag handle can be

ACM Transactions on Mathematical Software, Vol. V, No. N, Mo 20YY.



A Software Component for Mesh Query and Manipulation : 15

Table IX: Basic Tag Functions. (All function names are pregel with iMesh_.)

Name | Description

createTag Creates a new tag of the given type and number of values
destroyTag Destroys the tag if no entity is using it or if force is true
getTagName Returns tag ID string

getTagSizeValues Returns tag size in number of values

getTagSizeBytes Returns tag size in number of bytes

getTagHandle Return tag with given ID string, if it exists

getTagType Return data type of this tag

getAllTags Return handles of all tags associated with entity EH
getAllEntSetTags Return handles of all tags associated with entity set SH

Table X: Setting, Getting, and Removing Tag Data. (All fumctnames are prepended with iMesh_.)

| Function | Description |

setData The value in tag TH for entity EH is set to the first tagValSizagds of the
array<char> tagVal

setArrData The value in tag TH for entities in EHarray[i] is set usingalst the array<char>
tagValArray and the tag size

setEntSetData The value in tag TH for entity set SH is set to the first tag\VadSdytes of the
array<char> tagVal

set[Int,Dbl,EH]Data The value in tag TH for entity EH is set to the int, double, otitgrhandle in
tagVal; array and entity set versions also exist.

getData Return the value of tag TH for entity EH

getArrData Retrieve the value of tag TH for all entities in EH array, witéta returned as al
array of tagVal's

getEntSetData Return the value of tag TH for entity EH

get[Int,Dbl,EH]Data Return the value of tag TH for entity EH; array and entity ssions also exist.

rmvTag Remove tag TH from entity EH

rmvArrTag Remove tag TH from all entities in EH array

rmvEntSetTag Remove tag TH from entity set SH

found from its name. Also, all tags associated with a paldicentity can be retrieved; this
can be particularly useful in saving or copying a mesh.

Initially, a tag is not associated with any entity or entigt,sand no tag values exist;
association is made explicitly by setting data for a tagtemair. Tag data can be set
for single entities, arrays of entities (each with its owttued, or for entity sets. In each
of these cases, separate functions exist for setting getagridata and type-specific data.
Analogous data retrieval functions exist for each of theses.

When an entity or set no longer needs to be associated with atfor instance, a
vertex was tagged for smoothing and the smoothing operé&iotnat vertex is complete
— the tag can be removed from that entity without affectingeotentities associated with
the tag. When a tag is no longer needed at all — for instancenwali vertices have been
smoothed — the tag can be destroyed through one of two varianhanisms. First, an
application can remove this tag from all tagged entitied, then request destruction of the
tag. Simpler for the application is forced destruction, iniet the tag is destroyed even
though the tag is still associated with mesh entities, altdglvalues and associations are
deleted. Some implementations may not support forcedwsin.
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Table XI: Error Handling Functionality. (All function nareare prepended with iMesh_.)
| Name | Description |

| getDescription | Retrieves error description |

4.6 Error Handling

Like any API, the iMesh interface is vulnerable to errorthei through incorrect input or

through internal failure within an implementation. Fortarsce, it is an error for an appli-
cation to request entities with conflicting types and tog@s. Also, an error in the imple-
mentation occurs when memory for a new object cannot beattdc The iMesh interface
defines a number of standard error conditions which couldadMesh functions, either

because of illegal input or internal implementation err@ach of these error conditions
has an accompanying description, which can be retrievedlipygiMesh_getDescription,

summarized in Table XI.

4.7 Compliance Testing

To ensure consistency between implementations and td assis developing partial im-
plementations based on their own mesh data structures, veedaaeloped a comprehen-
sive compliance test suite for the iMesh interface. Whetings full implementation of
the interface, the test suite uses the iMesh implement&tioaad a mesh file, then tests
each interface function. These tests are typically doneobyparing information retrieved
in multiple ways — for instance, retrieving coordinate infation in both blocked and
interleaved order, or retrieving adjacency informatiotitgrby-entity or for all entities of
a given type. The set and tag functions can be easily testemtdating sets or tags in
the test code and querying the new sets and tags to verifydbeiectness. We are cur-
rently working on a function-level compliance testing, Battusers wishing to use a single
iMesh-based service can implement and test only the fumetiequired for that service.
This fine-grained testing is much more difficult, becausesistancy between different
calls can no longer be relied on. The combination of thesetésbsuites will ensure that
different iMesh implementations have the same behaviartlaat applications can rely on
correct interaction with iMesh services.

4.8 Fortran Compatibility

For compatibility with the Fortran convention that funetfreturning values do not mod-
ify their arguments, no iMesh function returns a value. Tikaall iMesh functions are C
void functions or Fortran subroutines. Also, string argatsén the C AP| have an accom-
panying argument giving their length; these string lengtiuments are added at the end
of the argument list in the order the strings appear. Forffeand Fortran90/95 compil-
ers must support the pass-by-value extension to be conatiih the iMesh API. Fortran
2003 has C interoperability features that greatly simplytens; we provide a Fortran 2003
module definition and examples online [ITAPS Software Wejgp2007].

5. USAGE EXAMPLES

In this section, we provide several examples of using thestM@mponent, including fi-
nite element simulation, mesh modification, mesh partitignand visualization. Each of
these services has been demonstrated to work with multigdéementations of the iMesh
component, and — where efficiency data are available — theheagl of using the iMesh
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API rather than a native implementation is quite small. Idlidn to these examples
of direct iMesh usage, members of our consortium are colkthay with applications re-
searchers to introduce ITAPS software tools into applicestin accelerator design, nuclear
fusion, groundwater simulation, combustion, and comjutat biology; these efforts are
not described in this paper.

5.1 Existing iMesh Implementations

Before discussing applications of the iMesh interface, vilé summarize the status of
the existing iMesh implementations. Our consortium hasipced a complete reference
implementation of the iMesh interface as well as four corgplenplementations based
on our pre-existing mesh databases, all of which are availdibectly through our web-
site [ITAPS Software Webpage 2007]; most also have their eshsites. Each of the
five supports all standard finite element topologies — hedeheetrahedra, prisms, pyra-
mids, triangles, and quadrilaterals. Each has its ownqadati strengths and areas of most
frequent application.

—The reference implementation (Reflmpl) is intended assictresh database with full
support for all iMesh functionality. Users looking for a ttesd for experimenting with
iMesh or for implementing meshing algorithms without th#ficlilties of first writing a
mesh database will find this implementation of particulégiiast.

—The Flexible Mesh DataBase (FMDB) [Remacle and Shepha@3]2i8 designed es-
pecially to handle adaptively changing mesh data, inclydiexible storage of adja-
cency information. Application usage of FMDB includes cartgtional fluid dynamics
(CFD), fusion, and accelerator simulations.

—The Mesh Oriented datABase (MOAB) [Tautges et al. 2004higipularly efficient in
its memory management. Application usage for MOAB includeslear reactor mod-
eling, neutron transport, and accelerator design optitioiza

—The Generation and Refinement of Unstructured Mixed-etereshes in Parallel
(GRUMMP) [Ollivier-Gooch 2005] toolkit is designed for amgular/tetrahedral mesh
generation, improvement, and adaptation, and is partigugéficient in retrieving adja-
cency information. Application usage is primarily in CFBpecially aerodynamics and
non-Newtonian fluid dynamics.

—The Pacific Northwest National Laboratory’'s NWGRID [Treaand Trease 2004] is
intended for adaptive mesh refinement, especially for saighimeshes. Application
usage includes computational biology, CFD, solid mectgr@ind subsurface transport
modeling.

5.2 A Simple Finite Element Solver

To demonstrate the cost of using the iMesh interface in a&&lgiomputational science ap-
plication, we developed a simple finite element applicatiai solves a diffusion problem
in two dimensions on the unit square:

OkOu(x,y)) = f (1)
ux=0)=0 ux=1=1 u(y=0=0 w(y=1)=0. 2

The finite element solver uses linear triangular elementsexact integration rules. The
finite element solver is written in C and uses PETSc to soleditiear systems.
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Table XII: iMesh functions used in the simple finite elemeuivver for different mesh data access

| Array Access | Entity Iterator | Entity Array Iterator |
getRootSet getRootSet getRootSet
getTagHandle getTagHandle getTagHandle
getVixCoordIndex initEntlter initEntArrliter
getAllVixCoords getNextEntlter getNextEntArriter
getEntities getEntAd] getEntArrAdj
getintArrData getVitxCoord getVixArrCoords
getDblArrData getintData getintArrData
getDblArrData getDblArrData

We focus our attention on setting up the linear system ansidenfour different options
for accessing the mesh data: 1) through array-based machsdifined in the iMesh in-
terface, which should approximate the performance of aaatiplementation; 2) through
entity iterators; and 3) through entity array iterators.g&elless of access method, we
require for each vertex its coordinates; a global id and antauy flag as stored attached
to the vertices as tags. For elements, we require downwagagerty information (face
to vertex) and store a global id and computed element areggas YWe make use of the
iMesh functions given in Table XIl. In all cases, we must d@btée root set from the
iMesh instance and get the tag handles for the global idsydemy flags and element ar-
eas. In the case of array access, we obtain a lists of all thexvand face entities in the
mesh and can obtain the tag data as arrays ofraire vtxor num_elem We can obtain
the vertex coordinate information and element connegtinfiormation using these entity
arrays or, as we did in this example, directly from the megh tase. It is guaranteed by
the iMesh interface that the information returned usingéharray-based calls will have
a consistent ordering across all calls. The iMesh calls fsethe entity and entity array
iterators provide the same functionality either entity lyity or for arrays of entities. In
each case, we initialize the iterator to return mesh facdganentity information through
the getNextEnt(Arr)lter function. For each entity (arregfurned, we obtain the downward
vertex adjacency information, the vertex coordinates,rseeetied global id, boundary, and
element area tag data.

This application has been timed with two iMesh implementsi GRUMMP and Sim-
pleMesh, a small-scale testimplementation developedwtédrace Livermore; the applica-
tion has also been tested successfully with other iMeshaémphtations, although timings
are not reported here. We ran each case 40 times and repavetage time required to set
up the linear system in milliseconds, along with the peragatincrease in cost compared
to the use of problem-sized arrays, in Table XIIl. In the cakthe entity array iterator,
we used array sizes of 1, 3, 5, 10 and 20. This is a small probiee the total number
of elements in the mesh is 6077, so the largest array iterapyesents only about 0.3%
of the total problem size. Not surprisingly, the array basedess to the vertex and ele-
ment information is the fastest. Entity iterators are ppsghthe most natural to program,
but result in the highest overhead costs due to the very langeber of function calls
(10+3- (Ne+ Ne- ny) +4-ny), wherene is the number of elements amgl is the number
of vertices; for the SimpleMesh implementation, the ovarhis only 6.6%, but for the
GRUMMP implementation it is a much higher 27.6%. The entityag iterator cases de-
crease in cost as the array size grows and number of funditndecreases; in this case,
the total number of iMesh function calls is 36 ne/ WS +4xny/|W S, whereW S is
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the size of the work set; for both implementations, the ogachis reduced by at least a
factor of two compared with entity iterators.

Table XIllI: Timing results for the 2D linear finite elementlger using the SimpleMesh implementation of the
iMesh interface.

Case SimpleMesh GRUMMP

Time (ms) % x 100 || Time (ms) %rg;y) x 100
Array-based 81.8 — 86.7 —
Entity Iterator 87.2 6.6% 110.6 27.6%
Entity Array Iterator (1) 87.6 7.1% 109.0 25.8%
Entity Array lterator (3) 86.2 6.7% 102.5 18.2%
Entity Array Iterator (5) 85.3 4.3% 99.0 14.1%
Entity Array lterator (10) 85.4 4.5% 97.4 12.3%
Entity Array lterator (20) 84.4 3.3% 95.9 10.6%

5.3 Mesh Quality Improvement via Vertex Movement

The MESh QUality Improvement Toolkit (Mesquite)[Brewer el. 2003] improves the
accuracy of mesh-based simulations through optimizatfoime mesh vertex locations.
Mesquite can be used for element shape optimization, rteitgpmesh alignment, etc.,
and has been tested with the MOAB, FMDB, GRUMMP and NWGRID sMenplemen-
tations.

As input Mesquite requires an iMesh instance and entity aedle designating the sub-
set of the mesh over which to perform the optimization. If #mity set handle is the
root set, optimization is done for the entire mesh. Furthi@squite expects an integer tag
indicating whether the corresponding vertex may be movethgwptimization. Gener-
ally, boundary vertices are marked as fixed or otherwisetcaingd to the computational
domain boundary to ensure correct problem formulation. |gVtiiere is some variation
in iMesh functionality requirements in the different Meggusolvers, all Mesquite opti-
mization algorithms require iteration over elements antices contained in an entity set,
element-vertex adjacency queries, entity set creatiomsodification® vertex coordinate
qguery and modification, and tag data query. These capabilitre sufficient to support
Mesquite’s global element shape optimizer; a sample inmginis shown in Figure 3(a)
with the corresponding output mesh in Figure 3(b). Whenroiging a single vertex or
subsets of mesh vertices, iMesh implementation must afgmesitly determine the ele-
ments adjacent to a vertex. Output results were identicdidth the global and Laplacian
smoothers, and for data access using Mesquite’s native nepsbsentation and via the
iMesh interface.

Mesquite is also capable of optimizing to obtain specificrabgeristics of the mesh on
an element-by-element basis using target matrices. Treseatculated target matrices
are stored as iMesh tag data on the mesh elements and rétdexiag optimization. For
example, Figure 3(c) is the result of optimizing the sameauinpesh given previously,
except that target matrices are used to preserve the sizaspedt ratio of the elements.
Another example is shown in Figure 4 in which element aspatat is preserved while

5This is an artifact of early versions of both Mesquite andiMesh interface. The Mesquite-iMesh interaction
code could be updated to remove the need for this capability.
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matrix optimization

Fig. 3: Element shape optimization using Mesquite.

(b) Deformed mesh
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(c) Optimized mesh
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Fig. 4: Deforming boundary optimization using Mesquite.

Table XIV: CPU Time (seconds) for optimization of 40,000rent meshes.
Optimizer Internal iMesh
MOAB | GRUMMP
Global shape optimization| 45.38 45.16 | 45.16

Laplacian smoother 111.60 | 472.65 —
Target matrix optimization| 79.30 82.65 | 89.38
Deforming boundary 12.73 15.48 | 21.59

updating the mesh for a deforming mesh boundary. An initig@tropic mesh, shown in
Figure 4(a), is used to calculate the target matrices. Eig(lr) shows the same mesh after
boundary deformation, with some elements inverted duedatiange in location of the
boundary vertices. This mesh (with the stored target negjits the input to the Mesquite
optimizer. The resulting mesh, with the element anisotqo@served, is shown in Figure
4(c).
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Table XV: Performance for the iMesh swapping service foressonic aircraft mesh (251,140 tetrahedra).
Native GRUMMP |
(non-iMesh) iMesh

Swaps 25,448 28,629
Rate (ssg) 3,380 2,800
Memory (MB) 216 MB 292 MB

Table XIV shows the impact of the iMesh interface and implatagon on optimizer
performancé. Each row of the table corresponds to one of the examples akitivehe
mesh interval size reduced by a factor of ten, resulting ishmae with 40,000 elements.
The global shape optimization results demonstrate oneechdtvantages of using a mesh
database library over a custom storage scheme. The moreacongpresentation of data
in the iMesh implementations results in a slight perforngingprovement over Mesquite’s
internal mesh representation. The Laplacian smoothinggiemphasize the overhead of
a standard interface and generalized mesh database. Tlo¢hémgocalculation is trivial.
The time spent in tens of millions of queries for small amswitdata (adjacencies, tag
data, vertex coordinates, etc.) dominates the run time @fottimization. The latter
two rows in Table XIV demonstrate the run time cost of aceessag data. The time
spent accessing other mesh data is the same as for the ghalps sptimization case.
The difference in run time for each mesh database is en@réyction of the time spent
guerying target matrices stored in tag data.

5.4 Mesh Quality Improvement via Topology Optimization

Local mesh topology optimization can be a powerful tool fmproving the quality of
unstructured meshes; however, mesh topology modificatiooften referred to as swap-
ping — is difficult enough to implement that an iMesh-basewise that performs these
operations would be useful for many applications. The addase and edge swapping op-
erations (see, for instance, [Freitag and Ollivier-Goo887] for a description) have been
implemented using the iMesh API [Ollivier-Gooch 2006].

The swapping service represents a worst-case scenariffiferecy tests for the iMesh
interface, in that the service requires fine-grained actmeasd modification of the mesh
database using the interface. As such, the swapping senakes a large number of calls
through the interface, each returning a small amount of. datecifically, the swapping
service uses the iMesh entity iterators, adjacency queaieay-based vertex coordinate
gueries, checks for entity type and topology, and entityatioe and deletion functions.
Optionally, the swapping service can also be restricte@t¢omfigure only tetrahedra that
are members of a given set, requiring the ability to querynsetnbership and to assign
new entities to sets. A second optional functionality is abdity to accept a tag and tag
value to indicate which faces within a set should be coneilérr swapping.

The swapping service has been tested with three differezgiiNmplementations: GRUMMP,
MOAB, and FMDB, and the results compared with an implemémtatf the same algo-
rithms using the GRUMMP back-end (referred toretive). For testing purposes, we
use a mesh for a supersonic aircraft initially containing,280 tetrahedra. Because of

6The iMesh implementation in GRUMMP does not yet supporteseto-element adjacency queries for surface
meshes, so it was not possible to run this Laplacian smapthiample with the GRUMMP iMesh implementa-
tion.
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differences in the order in which faces are accessed, oatpshes from the iMesh swap-
ping service are not identical but we have confirmed elsesvf@itivier-Gooch 2006] that
the meshes have statistically indistinguishable qualiiple XV compares the number of
swaps performed, the swapping rate, and the memory usetidardtive swapping im-
plementation and the swapping service using the GRUMMP liMeplementation. The
CPU time overhead for using the GRUMMP iMesh implementataiher than the native
implementation is about 20% for this case; the 40% overheatktimory usage is required
to support certain forms of entity creation that are not supga natively by the mesh
database. Preliminary timing results for the MOAB and FMCRatbases suggest that, for
this service, good performance depends on careful attetdioptimization of frequently-
called iMesh functions, especially iterators and adjageatrieval; in some cases, design
decisions in the mesh database may also have a significaattrap performance.

5.5 A Partitioning Service

As a precursor to our ongoing work for a parallel extensioth® iMesh interface, an
iMesh-based service that performs partitioning would befuls Partitioning distributes
data over sets of processors and is needed by unstructulémst adaptive parallel appli-
cations. Many of the partitioning methods in Zoltan [Bomaraé 2007] have been made
available in a service that uses the iMesh API to access nagah @he partitioners avail-
able can be grouped into three categories; simple paritiior testing and demonstration,
geometric or coordinate-based partitioners, and grapitipamg.

For the simple partitioners, the partitioning service usesiMesh queries for entities
and number of entities. The partition service can operdteedevel of any mesh entity (i.e.
vertex, edge, face, or region). The partitioning servicesusoth single-entity and array-
of-entities access to mesh data. For the geometric pawtitsy the partitioning service uses
the iMesh single-entity adjacency queries and array-basgdx coordinate queries. For
graph partitioning, the partitioning service uses theyalrased adjacency queries.

The partition data is stored by both attaching an integertdagach mesh entity and
collecting entities into sets with integer tags. Any presqartition data is destroyed
before new partition data is created. The partition seruges entity set query, deletion,
and creation functions as well as the ability to assign neitiento sets and get, destroy,
create, and set tag data.

The partitioning service has been tested and is interofereth three mesh database
implementations available through the iMesh C interfac@AB, FMDB, and GRUMMP.
Users need only link in the desired implementation; no otihemges are necessary. A
partitioning service interfacing directly to MOAB perfosonly slightly faster than the
partitioning service interfacing to MOAB through iMesh. Partition a mesh with 1.4
million faces by faces using recursive coordinate bisectibe MOAB native implemen-
tation required 37.2 seconds, while using the ITAPS C iatatto access the MOAB data
structures required 38.2 seconds (2.5% overhead).

5.6 Visualization Using the iMesh Interface

Visualization and interactive manipulation of meshes asagdfields defined on meshes is
important in many aspects of simulation software develagmwards this end, we have
developed a Vislt [Childs et al. 2005] plugin that accesseshand solution data through
an iMesh implementation. We have demonstrated that thewupiugin is interoperable

across three different iMesh implementations: GRUMMP, MB#d FMDB. The plugin
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Fig. 5: An example of size field-based mesh adaptation.

uses array-based vertex coordinate queries. Solutionslegé&rieved using iMesh tag ca-
pabilities. In addition, the plugin uses recursive entiéy gueries to map an iMesh entity
set hierarchy to a roughly equivalent Vislt construct chbesubset inclusion latticeThis
enables Vislt to provide intuitive GUI controls to usersénrhs of subsets that are charac-
teristic to various stages of their design and analysis flmsls. For example, users often
need to focus their attention on a specific part in the origd#eD model, a specific regime
in the material model, or a specific discretization regiothnumerical model. The abil-
ity for users to interactively visualize, query, calculated otherwise analyze data in terms
of characteristic subsets such as these both within andsesch stage of a design and
analysis workflow fundamentally enhances the flexibilityted analysis activities possible

within the Vislt visualization tool.

5.7 Size Field-Based Mesh Adaptation

Adaptive methods are central to ensuring the accuracy diathifity of simulation results.
One approach to supporting mesh adaptation is to provideaeehat can take an existing
mesh with a new mesh size field associated with it and creatédbired adapted mesh by
applying appropriate mesh modification operations. Sucérace for anisotropic mesh
adaptation has been under development of a number of yeiaes [&l. 2005]. To ensure
the ability to deal with general curved geometries that acanefrom CAD systems, the
service builds on a generalized interaction with the gedmatodel [Beall et al. 2004]
and ensures the mesh can properly represent the domairecdsniLi et al. 2003]. This
service has been used to construct adaptive simulatioreguoes by combining it with
finite element and finite volume solvers, and associated ardicators. Since the mesh
adaptation service works off a general anisotropic mesh fétd, error indicators that
have been used include various combinations of analytidsjednisotropi@ posteriori
correction indicators and geometric approximation comsitions [Shephard et al. 2005;
Wan et al. 2005]. An example of a part before and after refimemging this approach is
shown in Figure 5.

The current version of the mesh adaptation service builds@RMDB mesh library that
employs mesh topology like iMesh. Although it is possibledplace all FMDB calls with
iMesh calls in the mesh adaptation service code (an acplatyned for the future), the size
of the code and the desire to apply the mesh adaptation tacapiphs quickly prompted
us to take an alternative initial approach. In this approaobshes are accessed through
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the iMesh functions and loaded into the FMDB structures. miesh adaptation process is
carried out and the resulting mesh is then put back into iMesh. This approach has the
disadvantage that at the beginning and end of the mesh gidappaocess there are two
copies of the mesh. However, since the size of the mesh isajypsmall compared to the

structures used during the implicit finite element and findkime solvers being used to
date, there have not been memory limitations introducedhisyprrocess.

6. DISCUSSION AND CONCLUSIONS

In this paper, we have described a new software componeniésh-based applications
— both meshing and solver applications. We have describéetail the key features of
this software component, called iMesh: its data model — tviiiefines the types of data
that the component works with — and its interface — which defihow applications can
interact with mesh data.

Also, we have shown by example that iMesh component is flexéblough for a wide
range of applications — including finite element solverssmenprovement and adapta-
tion, partitioning, and visualization. Our experiencehwtiiese examples shows that rela-
tively complex mesh modification and solution requiremesats be met by the interface,
with low impact on efficiency. Specifically, for a simple fimielement solver, overhead
induced by using the iMesh interface is less than 10%, ealiegihen data for multiple
entities is retrieved through the mesh interface at once. ntesh smoothing, the over-
head rate varied significantly from case to case, dependingeamount of work done
by the smoothing code relative to the number of calls throinghmesh interface. For
mesh swapping, another fine-grained use case for the mespooamt, overhead rates
were about 20% compared with a native implementation of #émeesalgorithms. Three
higher-level services — mesh partitioning, visualizatiand mesh adaptation — have also
been tested across multiple iMesh implementations. In eash, the services have proved
to be interoperable, and the overhead in using the iMeshfaute is acceptable. Overall,
our experience with these services confirms that relativetyiplex mesh operations can
be performed correctly using the iMesh interface. Also, weeifound clear examples of
significant differences between mesh database designemalbxun time for a particular
service!

Several implementations of the iMesh component are cuyrewilable, as are the ser-
vices described in this paper.[ITAPS Software Webpage PB@7analogous software
component for geometric query and manipulation for mesetaapplications has also
been developed, and work is nearing completion on a paeadtehsion of the mesh com-
ponent.
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